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Abstract— This paper presents a scalable tensor-based ap-
proach to computing controllability and observability-type en-
ergy functions for nonlinear dynamical systems with polynomial
drift and linear input and output maps. Using Kronecker
product polynomial expansions, we convert the Hamilton-
Jacobi-Bellman partial differential equations for the energy
functions into a series of algebraic equations for the coefficients
of the energy functions. We derive the specific tensor structure
that arises from the Kronecker product representation and
analyze the computational complexity to efficiently solve these
equations. The convergence and scalability of the proposed
energy function computation approach is demonstrated on a
nonlinear reaction-diffusion model with cubic drift nonlinearity,
for which we compute degree 3 energy function approximations
in n = 1023 dimensions and degree 4 energy function approx-
imations in n = 127 dimensions.

I. INTRODUCTION

In many modern engineering applications, models are
both high-dimensional and nonlinear. Common approaches
to controller design often require sacrificing either the
high-dimensionality or the nonlinearity in order to remain
computationally tractable. For applications where both the
nonlinearity and the high-dimensionality are critical to the
model’s accuracy, nonlinear model reduction is an attractive
way to systematically reduce the system dimensionality—to
keep computations manageable—while retaining important
nonlinear features of the model.

Balanced truncation (BT) is one of the predominant
system-theoretic model reduction approaches for linear time-
invariant (LTI) systems [1]–[3]. Its success for LTI systems
has stimulated much interest in extending BT to nonlinear
systems. While Scherpen provided the theoretical extensions
to nonlinear control-affine systems [4]–[7], developing scal-
able computational methods to implement nonlinear BT for
nonlinear systems remains an active area of research.

One of the main computational challenges in nonlinear
BT is solving the Hamilton-Jacobi-Bellman (HJB) partial
differential equations (PDEs) for the controllability and
observability-type nonlinear energy functions. HJB PDEs
are notoriously difficult to solve for general nonlinear sys-
tems, especially for high-dimensional models of interest in
model reduction. Solving HJB PDEs is also required in
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nonlinear optimal control problems, so many approaches
have been developed to approximate solutions to HJB PDEs,
including state-dependent Riccati equations [8], algebraic
Gramians [9]–[11], discretization techniques [12], and iter-
ative approaches [13], [14]. We are particularly interested
in Al’brekht’s method [15], [16], a power-series-based ap-
proach which has been widely used to locally approximate
HJB PDE solutions for low-dimensional models [6], [17]–
[22]. More recently, this power series approach has been
adapted to solve optimal control problems for moderately-
sized bilinear systems [23], [24], quadratic drift systems
[25], [26], and polynomial drift systems [27], [28]. These
works demonstrated that polynomial approximation induces
tensor structure in the resulting equations for the polynomial
coefficients that modern solvers (e.g., [29], [30]) can exploit
to improve scalability. For computing nonlinear BT energy
functions, this approach has been adapted in [31], but only
for models with quadratic drift nonlinearities.

The first contribution of this article is a scalable Kronecker
product-based approach to computing nonlinear BT energy
function approximations for systems with polynomial drift of
arbitrary degree ℓ, linear inputs, and linear outputs. More-
over, we provide the explicit form of the equations of the
energy function coefficients in Kronecker product form. Ad-
ditionally, we provide open-access software implementations
for the proposed algorithms in the cnick1/NLBalancing
repository [32] under the v0.9.1 tag, along with the code
to reproduce the results for the presented example.

The rest of the article is organized as follows. Section II
reviews the definitions for the H∞ energy functions used in
nonlinear balancing, along with a summary of Al’brekht’s
method for approximating energy function solutions and an
introduction to the Kronecker product notation. Section III
presents the main contribution of the article, namely the
algorithms for computing the polynomial energy function
approximations for polynomial drift systems. In Section IV,
we discuss crucial details to efficiently implement the pro-
posed method in a scalable manner. We then demonstrate the
method on a nonlinear heat equation finite element model in
Section V, before concluding the article in Section VI.

II. BACKGROUND, DEFINITIONS, AND NOTATION

We first review the definitions for the H∞ nonlinear BT
energy functions in Section II-A. In Section II-B, we review
Al’brekht’s method for locally approximating solutions to
HJB PDEs. Afterwards, since our method is based on the
Kronecker product polynomial representation, we review
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basic notation and definitions relating to Kronecker product
polynomial expansions in Section II-C.

A. Energy Functions for H∞ Nonlinear Balancing

Consider the nonlinear control-affine dynamical system

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (1)

where x(t) ∈ Rn is the state, f : Rn → Rn is the nonlinear
drift, g : Rn → Rn×m is the nonlinear input map, h : Rn →
Rp is the nonlinear output map, u(t) ∈ Rm is a vector of
input signals, and y(t) ∈ Rp is a vector of output signals.

The H∞ nonlinear balancing framework [7] defines a pair
of energy functions that generalize the concepts of control-
lability and observability to (potentially unstable) systems of
the form (1). These energy functions (defined next) are then
balanced using a nonlinear state-space transformation, and
model reduction involves truncating states determined to be
less important in the balanced representation.

Definition 1: [7, Def. 5.1] Let γ be a positive constant
γ > 0, γ ̸= 1, and define η := 1−γ−2. The H∞ past energy
of the nonlinear system (1) is defined as

E−
γ (x0) := min

u∈L2(−∞,0]
x(−∞)=0,x(0)=x0

1

2

0∫
−∞

η∥y(t)∥2+∥u(t)∥2dt. (2)

If γ < 1, the H∞ future energy of the nonlinear system (1)
is defined as

E+
γ (x0) := max

u∈L2[0,∞)
x(0)=x0,x(∞)=0

1

2

∞∫
0

∥y(t)∥2 + ∥u(t)∥2

η
dt, (3)

whereas if γ > 1, the H∞ future energy is defined as

E+
γ (x0) := min

u∈L2[0,∞)
x(0)=x0,x(∞)=0

1

2

∞∫
0

∥y(t)∥2 + ∥u(t)∥2

η
dt. (4)

The following theorem states that the energy functions,
which are nominally defined by optimization problems, can
be computed as the solutions to HJB PDEs.

Theorem 1: [7, Thm. 5.2] Assume that the HJB equation

0 =
∂E−

γ (x)

∂x
f(x) +

1

2

∂E−
γ (x)

∂x
g(x)g(x)⊤

∂⊤E−
γ (x)

∂x

− η

2
h(x)⊤h(x)

(5)

has a solution with E−
γ (0) = 0 such that the quantity −f(x)−

g(x)g(x)⊤∂⊤E−
γ (x)/∂x is asymptotically stable. Then this

solution is the past energy function E−
γ (x) from (2). Further-

more, assume that the HJB equation

0 =
∂E+

γ (x)

∂x
f(x)− η

2

∂E+
γ (x)

∂x
g(x)g(x)⊤

∂⊤E+
γ (x)

∂x

+
1

2
h(x)⊤h(x)

(6)

has a solution with E+
γ (0) = 0 such that the quantity

f(x)− ηg(x)g(x)⊤∂⊤E+
γ (x)/∂x is asymptotically stable.

Then this solution is the future energy function E+
γ (x)

from (4) for γ > 1 and from (3) for γ < 1.

B. Al’brekht’s Method To Solve HJB PDEs

In general, solving the HJB PDEs (5) and (6) analytically
is not feasible. In this work, in the interest of developing
scalable algorithms for nonlinear balancing, we focus on the
approximation technique of Al’brekht. For the special case
when the dynamics (1) are analytic, then the energy function
solutions to the HJB PDEs are also analytic [15], [16]. As
such, Al’brekht showed that the energy function solutions to
(5) and (6) can be expanded in a convergent power series

E−
γ (x) = E−

γ
(2)

(x) + E−
γ

(3)
(x) + · · ·+ E−

γ
(d)

(x) + . . .

E+
γ (x) = E+

γ
(2)

(x) + E+
γ

(3)
(x) + · · ·+ E+

γ
(d)

(x) + . . .

where (2) denotes a quadratic term, (3) denotes a cubic term,
and so on. According to Al’brekht, upon inserting polyno-
mial expressions into the HJB PDEs (5) and (6), collecting
terms of the same polynomial degree gives an algebraic
equation for each energy function component E−

γ
(i)
(x) and

E+
γ

(i)
(x) for i = 2, . . . , d. The equations for the quadratic

terms E−
γ

(2)
(x) and E+

γ
(2)

(x) yield algebraic Riccati equa-
tions, and the remaining components E−

γ
(k)

(x) and E+
γ

(k)
(x)

for k = 3, . . . , d solve linear algebraic systems.
While Al’brekht conceptually introduced the idea of a

power-series-based approach to solving HJB PDEs, it was
presented in an abstract manner without explicit equations
to solve and without scalable software. In this work, we
adopt the Kronecker product representation to write the
polynomials explicitly so that we may derive the exact
form for the algebraic equations for the energy function
polynomial representation.

C. Kronecker Product Definitions and Notation

The Kronecker product of two matrices A ∈ Rp×q and
B ∈ Rs×t is the ps× qt block matrix

A⊗B :=

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 ,

where aij denotes the (i, j)th entry of A. Repeated Kro-
necker products are written as

x k := x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

∈ Rnk

.

For A ∈ Rp×q , the k-way Lyapunov matrix is defined as

Lk(A) :=
k∑

i=1

Ip ⊗A⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
k factors, A in the ith position

∈ Rpk×pk−1q.

We also use the vec[·] operator, which stacks the columns
of a matrix into a single column vector, and the perfect shuffle
matrix Sp×q ∈ Rpq×pq [33], [34], defined as the permutation
matrix which shuffles vec [A] to match vec

[
A⊤]:

vec
[
A⊤] = Sq×pvec [A] .

A concept which arises when dealing with polynomials in
Kronecker product form is symmetry of the coefficients (a
generalization of symmetry of a matrix), as defined next.
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Definition 2 (Symmetric Coefficients): Given a monomial
of the form w⊤

d x
d , the coefficient wk ∈ Rnk×1 is symmetric

if for all ai ∈ Rn it satisfies

w⊤
k (a1 ⊗ a2 ⊗ · · · ⊗ ak) = w⊤

k (ai1 ⊗ ai2 ⊗ · · · ⊗ aik) ,

where the indices {ij}kj=1 are any permutation of {1, . . . , k}.

III. COMPUTING H∞ ENERGY FUNCTION
APPROXIMATIONS FOR POLYNOMIAL DRIFT SYSTEMS

We restrict our consideration to nonlinear dynamical sys-
tems with polynomial drift and linear inputs and outputs:

ẋ = Ax+

ℓ∑
p=2

Fpx
p

︸ ︷︷ ︸
f(x)

+ B︸︷︷︸
g(x)

u, y = Cx︸︷︷︸
h(x)

, (7)

where A ∈ Rn×n, Fp ∈ Rn×np

, B ∈ Rn×m, and C ∈
Rp×n. We seek to compute energy function approximations
that solve the HJB PDEs (5) and (6) for systems with
the particular structure in (7). According to Al’brekht’s
method, the energy function solutions can be represented
as polynomials; we truncate the approximations to degree d
and write the energy functions using the Kronecker product.
Defining E−

γ
(i)
(x) := 1

2v
⊤
i x

i and E+
γ

(i)
(x) := 1

2w
⊤
i x

i ,
the energy functions take the explicit forms

E−
γ (x) ≈ 1

2

d∑
i=2

v⊤
i x

i , E+
γ (x) ≈ 1

2

d∑
i=2

w⊤
i x

i , (8)

with the coefficients vi,wi ∈ Rni

for i = 2, 3, . . . , d. In the
remainder of this article, the approximations in (8) are treated
as equalities. From here, we derive the algebraic equations
for the coefficients vi and wi for i = 2, 3, . . . , d. Inserting
the polynomial expression (8) for the past energy function
E−
γ (x) into the HJB PDE (5), along with the polynomial

dynamics in (7), the collection of degree 2 terms is

0 =
1

2

(
v⊤
2 (In ⊗ x) + v⊤

2 (x⊗ In)
)
Ax

+
1

8

(
v⊤
2 (In ⊗ x) + v⊤

2 (x⊗ In)
)
B×

B⊤ (
v⊤
2 (In ⊗ x) + v⊤

2 (x⊗ In)
)⊤ − η

2
x⊤C⊤Cx.

This is a quadratic algebraic equation. Assuming the equa-
tion is symmetric1, we require equality to hold for all x;
this leads to an algebraic Riccati equation, as shown in [31].
Al’brekht’s method continues by collecting terms of the next
degree in a recursive fashion. The collection of degree 3 and
degree 4 terms lead to the linear algebraic equations

L3

(
A+BB⊤V2

)⊤
ṽ3 = −L2(F2)

⊤v2,

L4

(
A+BB⊤V2

)⊤
ṽ4 = −L2(F3)

⊤v2 − L3(F2)
⊤v3

− 9

4
vec

[
V⊤

3 BB⊤V3

]
.

Carrying out the process for the remaining coefficients, we
arrive at the next two theorems, which give the explicit

1x⊤Mx only implies M = 0 if M is symmetric.

equations to compute the polynomial coefficients vi and
wi for the energy functions (8) for the polynomial drift
dynamics (7).

Theorem 2 (Past energy polynomial coefficients): Let
γ > γ0 ≥ 0 and η = 1 − γ−2, where γ0 denotes the
smallest γ̃ such that a stabilizing controller exists for which
the H∞ norm of the closed-loop system is less than γ̃.
Let the past energy function E−

γ (x), which solves the H∞
HJB PDE (5) for the polynomial drift system (7), be of the
form (8) with the coefficients vi ∈ Rni

for i = 2, 3, . . . , d.
Then v2 = vec [V2], where V2 is the symmetric positive
semidefinite solution to the H∞ algebraic Riccati equation

0 = A⊤V2 +V2A− ηC⊤C+V2BB⊤V2. (9)

For 3 ≤ k ≤ d, let ṽk ∈ Rnk

solve the linear system

Lk

(
A+BB⊤V2

)⊤
ṽk = −

∑
i,p≥2

i+p=k+1

Li(Fp)
⊤vi

− 1

4

∑
i,j>2

i+j=k+2

ij vec
[
V⊤

i BB⊤Vj

] (10)

Then the coefficient vector vk = vec [Vk] ∈ Rnk

for 3 ≤
k ≤ d is obtained by symmetrization of ṽk.

Theorem 3 (Future energy polynomial coefficients): Let
γ > γ0 ≥ 0 and η = 1 − γ−2 as in Theorem 2. Let the
future energy function E+

γ (x), which solves the H∞ HJB
PDE (6) for the polynomial drift system (7), be of the
form (8) with the coefficients wi ∈ Rni

for i = 2, 3, . . . , d.
Then w2 = vec [W2], where W2 is the symmetric positive
semidefinite solution to the H∞ algebraic Riccati equation

0 = A⊤W2 +W2A+C⊤C− ηW2BB⊤W2. (11)

For 3 ≤ k ≤ d, let w̃k ∈ Rnk

solve the linear system

Lk

(
A− ηBB⊤W2

)⊤
w̃k = −

∑
i,p≥2

i+p=k+1

Li(Fp)
⊤wi

+
η

4

∑
i,j>2

i+j=k+2

ij vec
[
W⊤

i BB⊤Wj

] (12)

Then the coefficient vector wk = vec (Wk) ∈ Rnk

for 3 ≤
k ≤ d is obtained by symmetrization of w̃k.

It is shown in [31] that the matrices Lk

(
A+BB⊤V2

)⊤
and Lk

(
A− ηBB⊤W2

)⊤
are invertible, and hence the

linear systems (10) and (12) are uniquely solvable for the
energy function coefficients vk and wk.

IV. IMPLEMENTATION DETAILS

With a naive implementation, the Kronecker product-based
approach scales poorly: it requires solving linear systems
(10) and (12) of dimension nk for vk, which has a cost of
O(n3k) using a direct solver. Thus efficiently solving—and
even forming—the linear systems (10) and (12) is critical for
scalability to systems with large state dimension n. In this
section, we outline some of the key details for efficiently
implementing the proposed approach, focusing on (10) since
the cost for (12) is identical.
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Forming the right-hand-sides of the linear systems

To begin, we must consider how to efficiently assemble the
right-hand side of (10), starting with the first set of terms:

−
∑
i,p≥2

i+p=k+1

Li(Fp)
⊤vi. (13)

The matrix Li(Fp) has dimension (ni × nk), whereas the
vector vi is (ni×1), so the cost of evaluating the Lyapunov
product Li(Fp)

⊤vi using naive matrix-vector multiplication
is O(nk+i) using level-2 BLAS operations. The dominant
cost occurs for the term with i = k − 1, for a total cost
of O(n2k−1). Instead, we exploit the structure of the i-
way Lyapunov matrix to form these terms more efficiently.
Consider a single term from the sum (13), and expand it
according to the definition of the i-way Lyapunov matrix

Li(Fp)
⊤vi = (F⊤

p ⊗ Ini−1)vi + (In ⊗ F⊤
p ⊗ Ini−2)vi + . . .

All of the quantities on the right-hand side are equivalent
under an appropriate permutation/reshaping, so the total cost
of forming this is i times the cost of computing the first term.
Using the Kronecker-vec relation [33] (D⊤ ⊗ Ip)vec [A] =
vec [AD], we rewrite the first term in the sum as

(F⊤
p ⊗ Ini−1)vi = vec

[
V⊤

i Fp

]
,

which is now matrix multiplication of (ni−1×n) and (n×np)
matrices, which has a cost of O(ni+p) using level-3 BLAS
operations. Since i+p = k+1, this is equivalent to O(nk+1).
Performing this operation i times for the remaining terms,
the total cost of evaluating Li(Fp)

⊤vi this way is O(ink+1).
Again, the dominant cost occurs for the case i = k−1, hence
the total cost to form the set of terms (13) is O(knk+1), as
opposed to O(n2k−1) for a naive implementation.

In the remaining terms in (10)

−1

4

∑
i,j>2

i+j=k+2

ij vec
[
V⊤

i BB⊤Vj

]
, (14)

products like V⊤
i B appear repeatedly, so we store them

in memory to avoid repeatedly forming them; however, the
dominant cost comes from multiplying these stored quanti-
ties. Treating V⊤

i B as an (ni−1 × m) matrix and B⊤Vj

as an (m × nj−1) matrix, the multiplication V⊤
i BB⊤Vj

costs O(mni+j−2) using level-3 BLAS operations. Since
i + j = k + 2, this is equal to O(mnk). We form k − 2
of these terms in the sum, so the overall cost is O(kmnk).
Assuming n ≫ km, this is negligible compared to the cost
of forming the other terms and solving the equations.

Solving the linear systems

An efficient solver is required to avoid the O(n3d) op-
erations used in a naive direct solve. As has been shown
in other recent works [23]–[27], [31], the k-way Lyapunov
matrix structure of the linear system (10) can be exploited by
modern solvers, e.g., [29], [30]. In this work, we use the k-
way Bartels-Stewart algorithm from [27], though better per-
formance may be obtained with other solvers. To summarize

the algorithm, a Schur factorization of A+BB⊤V2 is used
to convert the linear system into an upper-triangular form
which requires solving nk−1 dense upper triangular linear
systems of size n. Each of these nk−1 systems can be solved
by back substitution with a cost of O(n2), for a total cost of
O(nk+1), as opposed to a cost of O(n3k) for a naive direct
solve of the full system.

Summary of key implementation details

In summary, the linear system (10) for the kth coefficient
vk is formed efficiently by using the Kronecker-vec identity
to reshape Kronecker products as matrix-matrix multiplica-
tions, which can be computed with O(knk+1) complexity.
Then, using the k-way Bartels-Stewart solver from [27], (10)
can be solved with O(nk+1) complexity. Since the highest-
degree coefficient vd is the most expensive to compute, the
overall computational complexity is O(dnd+1).

V. NUMERICAL RESULTS FOR A NONLINEAR HEAT
EQUATION

We evaluate the scalability and convergence of the ap-
proach proposed in Sections III and IV on a finite element
model of a reaction-diffusion problem. The results are ob-
tained on a Linux workstation with an Intel Xeon W-3175X
CPU and 256 GB RAM.

Model: Consider the following nonlinear heat equation
modeling a reaction-diffusion system

zt(x, t) = zxx(x, t) + zx(x, t) +
1

8
z(x, t)

+ z(x, t)3 +

m∑
j=1

bmj (x)uj(t),

yi(t) =

∫
χ[(i−1)ℓ/p,iℓ/p]

z(x, t)dx, i = 1, . . . , p,

where z represents temperature, x ∈ [0, ℓ] is the spatial
coordinate, and t is time. The system is subject to Dirichlet
boundary conditions z(0, t) = z(ℓ, t) = 0 and an initial
condition

z(x, 0) = 5 · 10−5x(x− ℓ)(x− ℓ/2).

Stability of the open-loop system was studied in [35]–
[37]. Despite the origin being locally asymptotically stable,
trajectories that begin near the origin can experience transient
growth; this growth feeds the nonlinear terms in the model,
making the model unstable despite its linearization being
stable. This feature has been cited as a motivation for
nonlinear model reduction methods [37].

The problem from [35]–[37] is augmented with control
inputs uj(t) applied over m equally sized subdomains given
by the characteristic function bmj (x) = χ[(j−1)ℓ/m,jℓ/m](x)
and outputs yi(t) that are spatial averages of the solution over
p equally sized subdomains. Fig. 1 shows a simple diagram
of the model.

We pick ℓ = 30, m = p = 4, and we discretize the
model with N linear finite elements. This leads to a finite-
dimensional state-space model of dimension n = N−1 with
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x
ℓ

u1(t) u2(t) u3(t) u4(t)

y1(t) y2(t) y3(t) y4(t)

Fig. 1. Heat equation on a physical domain of length ℓ, subdivided here
into m = p = 4 regions for the inputs uj(t) and outputs yi(t).

cubic drift nonlinearity that can be written as

ẋ = Ax+ F3x
3 +Bu, y = Cx.

Results: First, we investigate the convergence of the future
energy function for η = 0.5 as the finite element mesh is
refined2. Due to spatial limitations, we omit the past energy
function results and report that they are qualitatively and
quantitatively comparable. In Table I, the size of model
n = N − 1 is increased while keeping the degree of the
energy function approximation fixed at d = 3 and d = 4,
respectively. The energy function values are shown in the
second and third columns of Table I for the initial condition
x0 corresponding to z(x, 0). In Fig. 2 we plot these energy
function values to more clearly show the trend. As the mesh
is refined, the energy function values converge, indicating
that the energy function approximations are behaving as
expected.

TABLE I. Future energy function convergence w.r.t. n for d = 3, 4.

n E+
3 (x0) (CPU Sec) E+

4 (x0) (CPU Sec)

3 5.78311 · 10−2 (1.9 · 10−3) 5.87940 · 10−2 (3.8 · 10−3)
7 6.17185 · 10−2 (3.0 · 10−3) 6.28924 · 10−2 (1.3 · 10−2)
15 6.74241 · 10−2 (9.7 · 10−3) 6.87624 · 10−2 (1.3 · 10−1)
31 6.99113 · 10−2 (5.3 · 10−2) 7.13010 · 10−2 (1.6 · 100)
63 7.08615 · 10−2 (4.4 · 10−1) 7.22615 · 10−2 (3.1 · 101)
127 7.12533 · 10−2 (4.6 · 100) 7.26545 · 10−2 (8.4 · 102)
255 7.14271 · 10−2 (6.1 · 101) –
511 7.15084 · 10−2 (1.0 · 103) –
1,023 7.15476 · 10−2 (1.8 · 104) –

We confirmed that the energy functions for this initial
condition converge with respect to d by computing up to a
d = 10 approximation for n = 7. For initial conditions close
enough to the origin, the theory is well established that the
Taylor approximation converges to the true energy function
[15], so we omit those results since the numerical scaling
with respect to n is more of interest for model reduction.

The CPU time required to compute the energy approxima-
tions is also shown in Table I to demonstrate the scalability
of the proposed algorithm with respect to model dimension
n. Since the variance in CPU time can be large for small
models (for which the program runs in a fraction of a

2For the numerical results, the number of elements N is chosen to be
a multiple of 4 so that the boundaries of the control and measurement
subdomains occur at nodes in the finite element mesh.

101 102 103

6

6.5

7

·10−2

n

E+ d
(x

0
)

Degree 3
Degree 4

Fig. 2. Convergence w.r.t n of the future energy function evaluated at the
initial condition x0 as the finite element mesh is refined.

101 102 103
10−4

100

104

n
3

n
4

n
5

n

C
PU

se
c

Degree 3
Degree 4

Fig. 3. Scaling of CPU time w.r.t n for d = 3, 4. The scaling closely
approaches O(dnd+1) as n grows, as predicted by the computational
complexity analysis. The grayed out data points are very sensitive to
computational variance on the order of tens of milliseconds, so they are
not indicative of the true scaling of the algorithms for large models.

second), the compute time is averaged over 10 runs for the
models of size n = 63 and smaller. The computation times
are plotted in Fig. 3 to more clearly show the scaling. As
discussed in Section IV, our algorithm theoretically scales
as O(dnd+1). In practice, this is in fact roughly the scaling
we see for moderately sized problems, as shown in Fig. 3.
We observe an apparent departure from the predicted scaling
for small n, but we attribute this to the minimum overhead
time to run the program, which does not scale with the
model dimension and appears to be on the order of a few
milliseconds. We also found that the execution time could
vary by tens of milliseconds for these small model sizes,
so despite averaging over several runs, these data points are
highly variable. We have therefore grayed out the first few
data points so that they are still visible but do not obstruct
the overall scaling trend as the model dimension increases.

Since the system is odd, the energy functions are even for
this example. Therefore w3 = 0, and the degree 3 energy
function approximation is identical to the degree 2 LQR
solution given by W2; a practitioner seeking to incorporate
nonlinear model features in the energy function should
therefore compute at least a degree 4 approximation.

VI. CONCLUSION

In this paper, we have presented a novel method for
computing H∞ energy functions for nonlinear systems with
polynomial drift, linear inputs, and linear outputs. The ap-
proach is based on the Kronecker product polynomial rep-
resentation, which allows us to obtain explicit formulas for
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the coefficients of the Taylor-series expansions of the energy
functions. The main advantage over existing approaches is
the ability to handle an arbitrary degree of polynomial drift
nonlinearity. By exploiting the tensor structure of the Kro-
necker product, we have shown that the method is scalable to
moderately sized problems, as demonstrated on the nonlinear
heat equation example.

The proposed method opens up several directions for
future research. A natural step forward involves extending the
approach to nonlinear inputs and outputs so that general poly-
nomial control-affine systems can be studied. Another direc-
tion of major interest is to use the computed energy functions
for control and model reduction. The energy functions can
be used directly for polynomial state-feedback controllers,
which have shown some promise in the literature over LQR
controllers [17], [27], [28]. The energy functions are also a
key step towards obtaining reduced-order models, which can
then be used to build observers and controllers for output-
feedback problems. Further accelerating the computations by
using more efficient solvers is also of interest.
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C, Analyse non linéaire, vol. 36, no. 5, pp. 1361–1399, Aug. 2019.

[25] ——, “Feedback stabilization of the two-dimensional Navier–Stokes
equations by value function approximation,” Applied Mathematics &
Optimization, vol. 80, no. 3, pp. 599–641, Jun. 2019.

[26] J. Borggaard and L. Zietsman, “The Quadratic-Quadratic Regulator
problem: approximating feedback controls for quadratic-in-state non-
linear systems,” in 2020 American Control Conference (ACC), Jul.
2020, pp. 818–823.

[27] ——, “On approximating Polynomial-Quadratic Regulator problems,”
IFAC-PapersOnLine, vol. 54, no. 9, pp. 329–334, 2021.

[28] H. Almubarak, N. Sadegh, and D. G. Taylor, “Infinite horizon nonlin-
ear quadratic cost regulator,” in 2019 American Control Conference
(ACC), Jul. 2019, pp. 5570–5575.

[29] L. Grasedyck, “Existence and computation of low Kronecker-rank
approximations for large linear systems of tensor product structure,”
Computing, vol. 72, no. 3–4, Jan. 2004.

[30] M. Chen and D. Kressner, “Recursive blocked algorithms for linear
systems with kronecker product structure,” Numerical Algorithms,
vol. 84, no. 3, pp. 1199–1216, Sep. 2019.

[31] B. Kramer, S. Gugercin, J. Borggaard, and L. Balicki, “Nonlinear
balanced truncation: Part 1—computing energy functions,” Dec. 2022,
arXiv:2209.07645v2.

[32] N. A. Corbin and J. Borggaard, “NLbalancing repository,” Available
online: https://github.com/cnick1/NLbalancing, Mar. 2024.

[33] H. V. Henderson and S. R. Searle, “The vec-permutation matrix,
the vec operator and Kronecker products: a review,” Linear and
Multilinear Algebra, vol. 9, no. 4, pp. 271–288, Jan. 1981.

[34] C. F. Van Loan, “The ubiquitous Kronecker product,” Journal of
Computational and Applied Mathematics, vol. 123, no. 1-2, pp. 85–
100, Nov. 2000.

[35] B. Sandstede and A. Scheel, “Basin boundaries and bifurcations
near convective instabilities: a case study,” Journal of Differential
Equations, vol. 208, no. 1, pp. 176–193, Jan. 2005.

[36] J. Galkowski, “Nonlinear instability in a semiclassical problem,”
Communications in Mathematical Physics, vol. 316, no. 3, pp. 705–
722, Oct. 2012.

[37] M. Embree, “Unstable modes in projection-based reduced-order mod-
els: how many can there be, and what do they tell you?” Systems &
Control Letters, vol. 124, pp. 49–59, Feb. 2019.

2511


